Routing algorithms have used many different metrics to determine the best route. Sophisticated routing algorithms can base route selection on multiple metrics, combining them in a single (hybrid) metric. The following metrics have been used:
- Path length
- Reliability
- Delay
- Bandwidth
- Load
- Communication cost.
Path length is the most common routing metric. Some routing protocols allow network administrators to assign costs to each network. In this case, path length is the sum of the costs associated with each link traversed. Other routing protocols define hop count, a metric that specifies the number of passes through internetworking products, such as routers, that a packet must taken route from a source to a destination.
Reliability, in the context of routing algorithms, refers to the dependability (usually described in terms of the bit-error rate) of each network link. Some network links might go down more often than others. After a network fails, certain network links might be repaired more easily ore more quickly than other links. Any reliability factors can be taken into account in the assignment of the reliability ratings, which are arbitrary numeric values usually assigned to network links by network administrators.
Routing delay refers to the length of time required to move a packet from source to destination through the internetwork. Delay depends on many factors, including the bandwidth of intermediate network links, the port queues at each router along the way, network congestion on all intermediate network links and the physical distance to be traveled. Because delay is a conglomeration of several important variables, its is a common and useful metric.
Bandwidth refers to the available traffic capacity of a link. All other things being equal, a 10-Mbps Ethernet link would be preferable to a 64-kbps leased line. Although bandwidth is a rating of the maximum attainable throughput on a link, routes through links with greater bandwidth do not necessarily provide better routes than routes through slower links. For example, if a faster link is busier, the actual time required to send a packet to the destination could be greater.
Load refers to the degree to which a network resource, such as a router, is busy. Load can be calculated in a variety of ways, including CPU utilization and packets precessed per second. Monitoring these parameters on a continual basis can be resource-intensive itself.
Communication cost is another important metric, especially because some companies may not care about performance as much as they care about operating expenditures. Although line delay may be longer, they will send packets over their own lines rather than through the public lines that cost money for usage time.
No comments:
Post a Comment
Your feedback and comments are valuable for us: